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Abstract Computed tomography is a non-destructive

testing technique based on X-ray absorption that permits

the 3D-visualisation of materials at micron-range resolu-

tions. In this article, computed tomography is used to

investigate fibre orientation and fibre position in various

fibre-reinforced materials such as ceramic matrix com-

posites, glass fibre-reinforced plastics or reinforced

concrete. The goal of this article is to determine the

quantitative orientation of fibres in fibre-reinforced mate-

rials. For this purpose, a mathematical technique based on

the structure tensor is used to determine the local orienta-

tion of fibres. The structure tensor is easy to implement and

results in a fast algorithm relying solely on local properties

of the given reconstruction. In addition, the local X-ray

transform is used to denoise fibres and to segment them

from the matrix.

Introduction

During the last decade, computed tomography (CT) has

been developed as an efficient means of non-destructive

testing in material sciences, see [1–5]. The resolution of CT

is sufficient enough to determine the three-dimensional

(3D) morphology of fibre-reinforced materials and to dis-

tinguish individual fibres. Nevertheless, there is still a lack

of reliable algorithms to compute fibre orientation. The

orientation of fibres is a very important characteristic of

fibre-reinforced materials such as ceramic matrix com-

posites (CMCs). This article serves two purposes. First of

all, we present an algorithm for detecting the orientation of

fibres and providing a quantitative distribution of the fibre

orientation. Secondly, an algorithm for denoising and fibre

segmentation is presented.

Related work

The use of CT as well as the use of scanning electron

microscopy as methods for material characterisation is

described in [6]. Both methods are explained in detail, each

having its own advantages. Non-destructive testing tech-

niques for CMC materials in general are explained in [7, 8].

A description of a practical reconstruction algorithm in CT

is given in [9]. The mathematics of CT is explained in

detail in [1, 10–12].

Examples of morphological applications using CT

analysis are the detection and analysis of pores [13], crack

distributions and the volumetric phase analysis. A further

application is the determination of fibre orientation in fibre-

reinforced materials as presented in Kastner et al. [14] and

Robb et al. [15]. Kastner et al. first perform a segmentation

between fibres and matrix followed by a skeletonisation

algorithm. From the computed skeleton, the fibre’s orien-

tation can be computed. Robb et al. utilise a matched filter

that adapts to the shape of a fibre to detect the fibre’s

orientation. This matched filter is an elongated anisotropic

Gaussian. Algorithms to perform the necessary convolu-

tions in an efficient way are described in [16]. Kastner

et al. as well as Robb et al. perform an orientation tensor,
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[17] that can be used to determine a local average

orientation.

In this article, the structure tensor is used to determine

the fibre’s orientation. The structure tensor is described in

detail in [18, 19]. This article follows Robb et al. by first

computing the fibre’s orientation in each fibre point. Then,

the distribution of orientation vectors is visualised. In

addition to visualising the distribution on a sphere, this

article uses a simpler approach; by visualising the distri-

bution on the x1–x2 plane and creating a graphical histo-

gram of the distribution of the azimuth angle. This is

preferable when the bigger part of all fibres is oriented in

the x1–x2 plane.

In [20], the distribution of orientation vectors is

weighted with the image intensity and with the degree of

orientation tensor anisotropy, thus removing the need for

prior fibre segmentation. The structure tensor is used by

[21] to determine the axis of cylindrical objects, especially

of C/C composite materials, as well as by [22] to perform

3D image skeletonisation.

For the purpose of fibre segmentation and anisotropic

smoothing of fibres, this article contains an adaptation and

modification of the local Radon transform, which is a 2D

operator, described in [23], to the 3D case of short-fibre-

reinforced materials.

Principles of computed tomography

Computed tomography is a non-destructive technique

allowing the visualisation of the 3D internal structure of an

object. The object is analysed by measuring its radiographs

from different angles. In effect, a series of 2D radiographs

of the object are generated while it is rotated around a

central axis, each radiograph describing the absorption

occuring at a specific angle. These individual radiograph

images are then combined to a 3D model of the object by a

mathematical process called reconstruction. This procedure

is divided into two parts. The first part consists of a filtering

step on the detector, reducing the effect of noise. The fil-

tering step can be steered to a specific application, see [24].

The second part of the reconstruction process is the back-

projection which backprojects the filtered radiographs onto

a grid and sums up the contributions within the space

covered by the projections, see [1].

Initially, CT has been developed as a tool for medical

applications [25, 26]. However, in the last decade, it has

been increasingly used for material testing as well [1]. The

applications permit the analysis of almost any material with

a spatial resolution down to *1 lm. The results presented

here were generated on a polychromatic X-ray CT-machine

of the type HR-CT 150/03, located at the ‘Fraunhofer

Institut für Silicatforschung’, Projektgruppe ‘Keramische

Verbundstrukturen’ in Bayreuth/Germany.

Evaluation of CT scans

The focus lies on the analysis of fibre-reinforced materials,

specifically the determination of fibre orientation in short-

fibre-reinforced materials. As an example for such mate-

rials, the focus is on reinforced concrete, see Fig. 1. Human

beings are able to recognise fibres in an intuitive and easy

way, giving rise to a qualitative inspection of fibres.

However, determination of quantitative results on fibre

orientation in a justifiable amount of time is impossible,

due to the presence of a large amount of fibres in the fibre-

reinforced materials. In contrast to human beings, com-

puters can handle large amounts of data reasonably fast,

assuming the use of an efficient algorithm. In this article, a

fast algorithm is presented, which does not rely on the

distribution of single fibres, but on the distribution of local

orientation of single points within a fibre. This algorithm,

using the so-called structure tensor, is very stable in respect

Fig. 1 Reinforced-concrete CT scan has been processed with

VGStudio Max 2.0, a original, b CT scan, c extracted steel fibres,

d slice along the cylinder axis, e slice perpendicular to the cylinder

axis. One can distinguish between pores (black), concrete (dark grey),

additives (light grey) and steel fibres (white)
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of noise, as it computes an averaged version of the gradi-

ent. Based on the local orientation of each point x on a

fibre, the fibre orientation distribution can be determined.

Based on directional information, computed by the struc-

ture tensor, a second algorithm is applied to perform a

segmentation between fibres and matrix. Finally, its

effectiveness is evaluated using numerical examples.

Computing fibre orientation using the structure tensor

In order to calculate the fibre orientation, the structure tensor

is introduced as a tool to determine fibre orientation, see [21].

The motivation for using the structure tensor as well as its

most important properties are explained in the following.

Basic assumptions

We assume that a reconstruction based on a CT scan is

given, such as the one shown in Fig. 1d, e. Figure 1d, e

show two slices of Fig. 1b. The grey-value intensity of the

reconstructed image can be described mathematically by a

discrete function I. Furthermore, assume I to be the discrete

version of a twice continuously differentiable function, so I

can be integrated, differentiated and interpolated to its

values at non-integers. If not stated otherwise, let a point x

be a point on a fibre, assuming that a prior segmentation

between fibres and matrix has been performed.

Characterisation of fibre orientation

Let x 2 R
3 be a fibre point. Because fibres are locally

constant, a vector v 2 R
3; jvj ¼ 1 exists, so that the dif-

ference quotient

ðIðxþ vÞ � IðxÞÞ2 � 0: ð1Þ

Therefore, an orientation vector w(x) can be specified by a

minimisation criterion

wðxÞ ¼ argminjvj¼1ðIðxþ vÞ � IðxÞÞ2: ð2Þ

In order to find such an orientation vector w(x) let at first v

be unspecified. It is clear that for w(x) has to hold

rIðxÞ>wðxÞ � 0: Then, a Taylor expansion is applied to

(1) by using the gradient rIðxÞ;

ðIðxþ vÞ � IðxÞÞ2 �ðv>rIðxÞÞ2

¼ v>rIðxÞv>rIðxÞ

¼ v> rIðxÞrIðxÞ>
� �

v:

ð3Þ

The latter equality holds because

v>rIðxÞ ¼ rIðxÞ>v: ð4Þ

In order to compute an average gradient at point x, Eq. 3 is

smoothed with a Gaussian Kq1
,

Kq1
� ððIð� þ vÞ � Ið�ÞÞ2Þ � v> Kq1

� rIrI>
� �� �

v: ð5Þ

Note that the sign of the direction of rI is not important

because rIrI> is quadratic in rI. Only the orientation

counts. Thus, no cancellation effects occur while

computing the convolution. As the computation of

gradients is ill posed, rI is replaced by a Gaussian

derivative

rIrðxÞ ¼ rðKr � IÞðxÞ ð6Þ

which is a regularisation of the ill-posed problem of

computing derivatives. It is worth mentioning that the

Gaussian derivative rIr can be computed directly from

tomographic data, see [27]. The additional Gaussian

smoothing with Kq1
as performed in (5) is an additional

regularisation. Equation 5 leads to the structure tensor Jq1

which is rIrrI>r convolved component-wise with Kq1
,

Jq1
ðxÞ ¼ Kq1

� rIrrI>r
� �

ðxÞ: ð7Þ

The Matrix rIrrI>r is defined as

rIrrI>r ¼
I2
x1

Ix1
Ix2

Ix1
Ix3

Ix1
Ix2

I2
x2

Ix2
Ix3

Ix1
Ix3

Ix2
Ix3

I2
x3

0
@

1
A ð8Þ

in respect of the partial derivatives Ix1
, Ix2

and Ix3
of Ir. This

way, a numerically stable approximation of ðIðxþ vÞ �
IðxÞÞ2 is obtained via the structure tensor,

Kq1
� ðIð� þ vÞ � Ið�ÞÞ2ðxÞ � v>Jq1

ðxÞv ð9Þ

Therefore, the minimisation problem (2) can be

approximated by its regularised form

wðxÞ ¼ argminjvj¼1v>Jq1
ðxÞv: ð10Þ

The latter minimisation criterion is fulfilled by the eigen-

vector corresponding to the smallest eigenvalue [28] of

Jq1
ðxÞ. Thus, the orientation vector w(x) can be obtained by

solving an eigenvalue problem [29].

Properties of the structure tensor

In the previous section, it has been shown that an orien-

tation vector w(x) can be assigned to each fibre point, x, by

means of the structure tensor. In this section, how the

structure tensor can be used to distinguish between fibres

and matrix is briefly described. First, the ability to compute

an averaged version of the gradient is addressed. The

direction, g(x), that is most parallel to the gradient in the

vicinity of a point x can be approximated by

gðxÞ ¼ argmaxjvj¼1v>Jq1
ðxÞv: ð11Þ
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123



Therefore, g(x) is the eigenvector corresponding to the

largest eigenvalue of Jq1
ðxÞ, in contrast to the previous

section, where the fibre orientation was given by the

eigenvector corresponding to the smallest eigenvalue.

Speaking in general, the analysis of the eigenvalues

k1 � k2 � k3 [ 0 of the positive-definite tensor Jq1
ðxÞ

can be used to describe the local characteristics of I in the

vicinity of x, see [22]:

– k1 � k2 � k3 [ 0 indicates isotropy.

– If k1 � k2 � k3 [ 0; then the point, x, is part of a

planar structure in I. No favoured fibre direction

exists, but two eigenvectors that span a plane that

contains x do.

– If k1 � k2 � k3 [ 0; then the point x is part of a line,

which means that x is a fibre point. As already stated,

the eigenvector corresponding to k3 describes the

fibre’s orientation.

Therefore, fibres should satisfy k1 � k2 � k3 [ 0.

Fibre segmentation and anisotropic smoothing of fibres

If fibre orientation is not uniform (see Sect. 6.3.2), then a

restriction to the orientation vectors of fibre points can be

beneficial. Therefore, a segmentation between fibres and

matrix might be necessary. In this section, an adaptation to

the 3D case of the 2D concepts proposed in [23] is per-

formed. In [23], the local Radon transform is used to

segment retinal vessels from non-vessel points. In order to

perform this segmentation, a strongly anisotropic kernel is

rotated and convolved with the image. The kernel is chosen

as a line detector. The maximum response in respect of the

direction of the kernel is chosen as a result, and a threshold

is applied. This algorithm is a brute-force algorithm. In the

3D case, this approach would take too much time, requiring

the computation of a large number of convolutions, and so

the fibre orientation has to be computed prior to segmen-

tation using the structure tensor. This way, only one con-

volution must be computed at each point x.

Local coordinates

The proposed fibre-detection algorithm is based on the

convolution with a kernel that is elongated in direction

w(x). Let the vector, w(x), be denoted as x which can be

written in spherical coordinates ðh;uÞ 2 ½0�; 360�Þ �
½�90�; 90�	 as

x ¼ xðh;uÞ ¼
cos h cos u
sin h cos u

sin u

0
@

1
A: ð12Þ

An orthonormal base of R3 that fits to the fibre orientation,

is given by x ¼ xðh;uÞ; x?1 ¼ x?1 hþ 90�; 0�ð Þ and x?2 ¼
x?2 h;uþ 90�ð Þ: The new base can be obtained by a rota-

tion of the vectors of the standard base fe1; e2; e3g by u
around the x2-axis followed by a rotation by the angle h
around the x3-axis. The vectors fx;x?1 ;x?2 g will be used

in the discretisations in the following sections.

The local X-ray transform

The standard X-ray transform, P, can be used as a model in

3D CT [10]. It maps an object I to its integrals over lines,

PIðx; bÞ ¼
Z

R

Iðbþ txÞdt; ð13Þ

where x is the direction of the line, and b [ x\ is

perpendicular to x. As this article aims for the local

analysis of fibres through a fibre point, x, it is beneficial to

introduce a new coordinate system. Let a point p be p ¼
xþ txþ b; where x is the direction of the fibre, b ¼
u1x?1 þ u2x?2 is a shift vector perpendicular to x and xþ
tx describes the nearest point from p on the fibre. The shift

b will be used later on to compute the Laplacian in the

plane perpendicular to x containing the point xþ tx: As

the image intensity I is degraded by noise, a regularisation

is necessary. This regularisation is achieved by the local

X-ray transform.

PLIðx;x; bÞ ¼
Z

R

Kq2
ðtÞIðxþ txþ bÞdt: ð14Þ

The integration weight Kq2
is a Gaussian with centre zero

and standard deviation q2. It also serves as a localised

version of (13), which is preferable, as it is not aimed

towards the computation of properties of I from non-local

data.

Smoothing of the input image

The integral (14) is a type of linear but anisotropic diffu-

sion, the direction of diffusion is the direction of the fibre.

Therefore, anisotropic Gaussian smoothing by the compu-

tation of line integrals of the image while preserving fibres

is possible.

Fibre segmentation

In [23], the second derivative of the local Radon transform

has been used to detect retinal vessels. In this article, the

local Radon transform is replaced by the 3D local X-ray

transform. The computation of the second derivative is

realised by a Laplacian with respect to the shift vector b,

J Mater Sci (2010) 45:888–896 891
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DbPLIðx;x; bÞ ¼ Db

Z

R

Kq2
ðtÞIðxþ txþ bÞdt: ð15Þ

As fibres are assumed to be darker than the background, it

is reasonable that at fibre points, x ? tx, the response of

the above integral is greater than zero. If the fibres are

brighter than the matrix, then the image is inverted. In

addition, a criterion for the segmentation of fibres is

DbPLIðx;x; 0Þ [ T ð16Þ

for a suitable chosen threshold T. Numerical examples

show that, for some examples, it is possible to choose

Otsu’s threshold [30] which is computed from the image

histogram without requiring human interaction.

Efficient implementation

The local X-ray transform is approximated by the trapezoid

rule

PLIðx;x; bÞ �
X
k2Z

Kq2
ðkÞIðxþ kxþ bÞ; ð17Þ

and therefore, is sampled with step size one. As x is mostly

not parallel to the Cartesian grid, I is not known on all

points that are needed to evaluate (17). Therefore, I is

interpolated trilinear leading to a formula of the form

PLIðx;x; bÞ �
X
m2Z3

ax;bðmÞIðxþ mÞ: ð18Þ

Writing b in the fx?1 ;x?2 g-coordinate system, a standard

discretisation of the derivative in (16) is

DbPLIðx;x; 0Þ � � 4 � PLIðx;x; 0Þ
þ PLIðx;x;x?1 Þ þ PLIðx;x;�x?1 Þ
þ PLIðx;x;x?2 Þ þ PLIðx;x;�x?2 Þ:

ð19Þ

As x?1 and x?2 uniquely depend on x, this in combination

with (18), leads to an approximation of the form

DbPLIðx;x; 0Þ �
X
m2Z3

bxðmÞIðxþ mÞ: ð20Þ

Since the filters bx are sparse, the correlation (20) is highly

efficient. Note that bx can be pre-computed in a

sufficiently dense discrete subset fxigi¼1;...;p of the unit

sphere S2 of R3. Thus, the explicit interpolation of I in R
3

as performed in (18) can be avoided. Choosing one xi

instead of x = w(x) (e.g. through the nearest neighbour

interpolation) requires the computation of only one

correlation with a precomputed kernel per point x,

thereby avoiding the performance of the necessary

interpolations in R
3 explicitly. Therefore, for each point,

x, only one line integral has to be approximated. The same

efficient behaviour holds for the smoothing of the image I

in Sect. 5.3 since PLIðx;x; 0Þ can be approximated by a

formula of the form

PLIðx;x; 0Þ �
X
m2Z3

cxðmÞIðxþ mÞ ð21Þ

with filters cx that are even sparser than the filters bx.

Note, that the filters bx and cx are symmetrical with

respect to the origin. Therefore, the involved correlations

are, in fact, also convolutions.

Numerical examples

Proving the non-specific use of any material type, the

presented algorithms are evaluated on CT images of dif-

ferent materials. In order to start with, the use of the local

X-ray transform for anisotropic image smoothing and for

fibre segmentation is shown. Then, the ability of the

structure tensor to determine fibre orientation is presented

on short-fibre-reinforced concrete. Next, two types of car-

bon-fibre-reinforced silicon carbide composites (C/SiC) are

examined, one being a 0�/90� woven fabric and the other a

short-fibre-reinforced (5-mm) C/SiC. In both cases, the

fibre volume content is 50–55%.

Image denoising and fibre segmentation

The local X-ray transform can be used as a tool for

denoising the original Fig. 2a, see Fig. 2b. In order to

improve the results, a linear isotropic diffusion for a small

amount of time has been applied. The diffusion process via

the local X-ray transform is linear, but anisotropic.

Whereas the background is smoothed strongly, the fibres

are still segmented from the matrix. Another aspect of the

local Radon transform, namely its ability to be used for

segmentation is shown in Fig. 2d which is a thresholded

version of Fig. 2c

Short-fibre-reinforced concrete

The theoretic results have been evaluated at a small section

of Fig. 1b. The parameter values for the computation of the

structure tensor Jq1
¼ Kq1

� ðrIrrI>r Þ are r = 0.65 and

q1 = 4.

Figure 3a shows the front side of a spherical represen-

tation of the orientation vectors. In order to compute fibre

orientation instead of fibre direction, the x3-component has

to be positive. If the x3 component is negative, then the

orientation vector is multiplied with -1. Note that only

points x with value of I(x) greater than the threshold T ¼
245 are regarded as fibre points. All other points are not

processed.
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Figure 3b shows a representation of the distribution of

the orientation vectors projected to the x1–x2 plane.

Figure 4a shows a slice of the original 3D image I.

Figure 4b shows a representation of the orientation

vectors that both encodes azimuth and elevation in

one colour. The azimuth is shown in the colourbar on

the right, and the elevation is described by the

brightness.

The regions between the fibres have been depicted in

dark blue or black. Fig. 4c, d show the azimuth and ele-

vation, respectively.

Silicon carbide composites

In this section, the proposed algorithms are evaluated on

C/SiC material, on fabric and on short-fibre-reinforced

Fig. 2 Application of local X-ray transform PL on a small section of short-fibre-reinforced C/SiC, a slice of the original image, b linear but

anisotropic diffusion, c application of DbPL on a and d final segmentation

Fig. 3 Global distribution of orientation vectors of short-fibre-

reinforced concrete. a Visualisation on a sphere, the number of

orientation vectors pointing to a cell of the sphere has been counted.

Red indicates a high number of vectors whereas blue indicates no

vectors. This is a statistical approach, because only the global

distribution of fibre orientation has been computed. b Each orientation

vector w(x) at the point x of the section has been projected on the x1–

x2-plane. The x1–x2 plane has been divided in 31 9 31 cells, and the

number of orientation vectors projected on a cell has been counted

Fig. 4 Results on reinforced concrete: one slice is shown, a slice of the original image, b azimuth and elevation encoded in one colour,

c azimuth angle of orientation vectors and d elevation angle of orientation vectors

J Mater Sci (2010) 45:888–896 893
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C/SiC. The CMCs are manufactured using the Liquid Sil-

icon Infiltration (LSI) process, and is composed of an HTA

fabric (3K) with a matrix of SiC. The short-fibre C/SiC

contains chopped HTA fibre bundles of approximately

5-mm length. The fibre volume content is 50-55% in both

cases.

Fabric-reinforced C/SiC

Figure 5a, b show the orientation vector distribution on a

fabric reinforced C/SiC. The fibre bundle’s orientation is

bidirectional in 0� and 90� orientation. It can be easily

verified that two orientations dominate. All the points have

been processed, regardless of whether they are fibre points

or not. This means that the threshold, T, has been set to

zero.

Figure 5c shows the original CT-image slice. Owing to

the Gaussian smoothing with a standard deviation of

q1 = 2 in computing the structure tensor, and to the small

distance between different fibres, the orientation is propa-

gated from fibres to the matrix, and vice versa. Therefore,

the computed orientation vector at a point x is almost

constant in a vicinity of x (at least modulo 180�) as can be

seen from Fig. 5d. The individual sectors of the fabric are

clearly visible. Figure 5d visualises the horizontal fibre

orientation in one slice of the fabric. Since it is required

that the choice of normalising the x3-component of the

orientation vectors be positive, the different ondulations of

the fabric results in two different colours in each sector

(yellow–dark blue red), (light blue–orange). Each colour

also encodes the fact whether the fabric is woven in

direction of the positive or the negative x3-axis.

Short-fibre-reinforced C/SiC

Figure 6 shows the fibre orientation distribution on short-

fibre-reinforced C/SiC. In order to improve the results, a

segmentation between fibres and matrix using the Lapla-

cian of the local X-ray transform has been applied, see

Fig. 2c. This means that for the statistics shown in Fig. 6a,

b only fibre points have been taken into account. The

standard deviation in computing the structure tensor was

q1 = 2 and that used for the computation of the local X-ray

transform was q2 = 4. It can be seen that the fibres are

anisotropic but located in the x1–x2 plane. Figure 6c shows

the distribution of the azimuth on the whole imagestack.

Figure 7b, c show the azimuth and the elevation for one

slice of the original image, see Fig. 7a.

Fig. 5 Results of structure tensor on fabric reinforced C/SiC, a distribution on a sphere, b distribution of orientation vectors projected to the x1–

x2 plane, c slice of the original image and d azimuth angle of orientation vectors in slice

Fig. 6 Global distribution of orientation vectors of short-fibre-reinforced C/SiC, a distribution on a sphere, b distribution of orientation vectors

projected to the x1–x2 plane and c distribution of azimuth

894 J Mater Sci (2010) 45:888–896
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Glass fibre-reinforced plastics

Figure 8 shows the distribution of orientation vectors as

well as the global distribution of the azimuth on glass fibre-

reinforced plastics [31]. The orientation vectors are mostly

oriented in the x1–x2 plane with a peak 45� of in the x1–x2

plane.

Figure 9 shows the results in one slice. The segmenta-

tion between fibres and matrix has been performed with the

Laplacian of the local X-ray transform as has been done for

short-fibre-reinforced C/SiC. In addition, the method can

be used to determine the fibre-volume content by

binarisation.

Conclusions

In this article, a method for computing the quantitative

fibre orientation distribution has been presented. This

method is based on the structure tensor, which computes

Fig. 7 Results of structure tensor on short-fibre-reinforced C/SiC, a slice of the original image, b elevation angle of orientation vectors and c
azimuth angle of orientation vectors

Fig. 8 Global distribution of orientation vectors of glass fibre-reinforced plastics, a distribution on a sphere, b distribution of orientation vectors

projected to the x1-x2 plane and c distribution of azimuth

Fig. 9 Results of structure tensor on glass fibre-reinforced plastics, a slice of the original image, brightened and contrast-enhanced, b elevation

angle of orientation vectors and c azimuth angle of orientation vectors
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the average gradient direction in the vicinity of a point x. In

addition, the structure tensor can be used to compute a

direction in which the image information is constant, if

such a direction exists. This leads to the computation of

fibre orientation. If the fibres are locally oriented in one

direction, then no prior segmentation between fibres and

matrix is needed; however, if the fibres are oriented ran-

domly, an a priori segmentation can be beneficial. In the

case of short-fibre-reinforced concrete; the segmentation

can be performed easily on the input image, because the

X-ray attenuation coefficient of steel is much higher than

that of concrete. Therefore, the segmentation can be based

on the grey value of the CT image. If a segmentation using

the grey value is too demanding, then a contrast enhance-

ment by a Laplacian operator perpendicular to the fibre

orientation is preferable. For homogenious material such as

fabric, the structure tensor is the ideal means of deter-

mining fibre orientation distribution.
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31. Rohde M, Fischer F, Altstädt V, Herrmann C, Krenkel W,

Hausherr JM (2009) IMC-Spritzgiesscompounder-Potentiale der

Langfaserverstärkung. In: Verbundwerkstoffe, Wiley, VCH, New

York, pp 483–66

896 J Mater Sci (2010) 45:888–896

123

http://www.ndt.net/article/cdcm2006/papers/hausherr.pdf
http://www.ndt.net/article/cdcm2006/papers/hausherr.pdf
http://www.ndt.net/article/dgzfp2008/Inhalt/di3a1.pdf
http://www.ndt.net/article/dgzfp2008/Inhalt/di3a1.pdf
http://www.math.uni-sb.de/service/preprints/preprint212.pdf
http://www.math.uni-sb.de/service/preprints/preprint212.pdf
http://www.num.uni-sb.de/iam/veroeffentlichungen
http://www.num.uni-sb.de/iam/veroeffentlichungen

	Determination of the fibre orientation in composites �using the structure tensor and local X-ray transform
	Abstract
	Introduction
	Related work

	Principles of computed tomography
	Evaluation of CT scans
	Computing fibre orientation using the structure tensor
	Basic assumptions
	Characterisation of fibre orientation
	Properties of the structure tensor

	Fibre segmentation and anisotropic smoothing of fibres
	Local coordinates
	The local X-ray transform
	Smoothing of the input image
	Fibre segmentation
	Efficient implementation

	Numerical examples
	Image denoising and fibre segmentation
	Short-fibre-reinforced concrete
	Silicon carbide composites
	Fabric-reinforced C/SiC
	Short-fibre-reinforced C/SiC

	Glass fibre-reinforced plastics

	Conclusions
	Acknowledgements
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


